A TREASURED RECYCLING TECHNIQUE FOR WASTE TETRA PAK PACKAGING MATERIALS

METHODOLOGY

Iza Radecka^{1,*}, Anabel Itohowo Ekere¹, Brian Johnston¹, Fideline Tchuenbou-Magaia², David Townrow¹, Szymon Wojciechowski³, Adam A. Marek³, Jan Zawadiak³, Khadar Duale⁴, Magdalena Zięba⁴, Wanda Sikorska⁴, Grażyna Adamus⁴ and Marek Kowalczuk^{4,*}

University of Wolverhampton, School of Sciences, Faculty of Science and Engineering, Wolverhampton, WV1 1LY, UK i.a.jonah@wlv.ac.uk* Schlumberger fellow*

BACKGROUND

- > Tetra Pak (TP) is a type of packaging widely used for aseptically packaging billions of litres of liquid food items, such as milk and juice.
- \succ Due to their inability to be biodegraded and fully recycled, waste Tetra Pak packages accumulate in landfills, consequently leading to several environmental pollution.
- > Low density polyethylene (LDPE); a synthetic plastic component within the packaging material causes negative toxic effects on human and animal health.
- > With the high yearly generation of 188 billion tonnes of waste Tetra Pak, there is the need to seek alternative ways of recycling waste tetra pak to yield end products that are economical and environmentally safe
- \succ To reduce the environmental impact of waste tetra pak, this study proposes a novel recycling technique of using the LDPE component in tetra pak wastes as a source of feed for the production of bioplastics (polyhydroxyalkanoates -PHA) by Cupriavidus necator; a bacterial strain.
- > PHAs are biodegradable bioplastics that can be synthesized from a wide range of carbon sources by many bacteria strains; having the potential of replacing and minimizing the hazardous impact caused by synthetic plastic waste. **Intracellular PHA**

Cupriavidus necator

Tetra pak packages

Bioplastics from PHA

granules

obtain LDPE using sol separation techniques Tetra pak 0.50 g of LDPE was a into the fermentation LDPE fermentation flasks containing *C.necator* LDPE in either Trypto broth (TSB) or Basal 1 486 24 10 medium (BSM) was incubated for 48 h at 3 Fermentation PHA in C.necator wa extracted using chlore

PHA in C.necator

Extraction and purification of PHA

Purified PHA bioplastic

Tetra Pak was pre-treated to obtain LDPE using solvent separation techniques	e Counts (Loa.,.cfu/ml)
0.50 g of LDPE was added into the fermentation flaks	Viab
fermentation flasks containing <i>C.necator</i> and LDPE in either Tryptone soy broth (TSB) or Basal salt	Figure BSM I ➤ Hi sho TS
medium (BSM) was incubated for 48 h at 30°C	renne
	TSB or
PHA in <i>C.necator</i> was	BSM o
extracted using chloroform	TSB wi
for 48 h	BSM w
tor Extracted PHA was purified using rotatory evaporation	Table ≻ Hi TF

e 2:Growth observation of *C. necator* with 0.5 g of TP in either TSB or medium after 48 hours of incubation at 30°C.

ighest growth was observed in TSB culture supplemented with TP (TSB-T) nowing that the addition of TP to TSB stimulated the growth of *C.necator* in SB compared to TSB only (TSB-C).

entation medium	Average cell dry weight (g/L)	Average PHA (g/L)	PHA (%w/w)
only (TSB-C)	0.865	0.013	1.5%
only (BSM-C)	0.073	ND	ND
vith TP (TSB-T)	0.820	0.33	40%
with TP (BSM-T)	0.087	ND	ND

1:PHA yield obtained from each fermentation study.

Highest PHA yield (40%) was observed when TSB was supplemented with TP (TSB-T) showing that the addition of TP not only increased the growth of *C.necator* but also stimulated the production of PHA when compared to TSB only (1.5%)

CONCLUSION

This study shows that Tetra Pak waste containing polyethylene is a suitable and cheap carbon source for the production of bioplastic (polyhydroxyalkanoate) by *Cupriavidus necator.*