

Time-dependent properties of mechanical metamaterials for orthopaedic implants

Dr Reece N. Oosterbeek

Associate Professor, Department of Engineering Science, University of Oxford

reece.oosterbeek@eng.ox.ac.uk

UK Metamaterials Network Health Challenge Sandpit University of Wolverhampton, 18th September 2024

Acknowledgements

Imperial College London

Imperial College London

Prof. Jonathan Jeffers

Stelios Kechagias

Dr Shaaz Ghouse

Aisha Mehmood

Funding: NIHR, EPSRC

RENISHAW

R E N A

Department of Engineering Science

University of Oxford Alexandra Sevcenco Dr Peter Walters Prof. Clive Siviour

Background – medical implant materials

Key challenges

Fatigue resistance

- Cyclic loading crack initiation and propagation
- Implants: Physiological loading cycles

Major weakness of AM components

- Rough surface with many flaws
- Brittle, stressed microstructure

Fatigue resistance - metallurgy

As-Built

Heat treatments

- HIP (Hot isostatic pressing) $\sigma_{f,10^{6}} = 4.9 \text{ MPa}$
- Vacuum heat treatment →

920°C

σ_{f,10^6} = 7.7 MPa

Semi-fused particles remain

- Reduced wettability
- Increased risk of metal debris

1200°C σ_{f,10^6} = 8.5 Mpa (73% increase)

Fatigue resistance – surface finish

Stream/drag finishing (mechanical abrasive media)

Chemical etching

- HF, HNO₃
- Problems with • over/under etching, infiltration

Chemical-electrochemical polishing

- Hirtisation[®]
- Acid + electrolyte, pulsed current + superimposed micropulses

Strut surface treatment

Oosterbeek et al., Addit. Manuf. 78 (2023): 103896.; Oosterbeek et al., SoftwareX 18 (2022): 101043.

Design and fatigue

As-built

Fatigue strength σ_f at 10⁶ cycles:

- Reduced in absolute terms (material loss)

Failure 🔶

Runout 🛇

7.3%

14.9% ♦

18.3% 🔶

10.8%

b)

20

15

10

Hirtisation

Failure 🔶

Runout ♦

5.0%

8.4%

10.6% (

- ratio (σ_f/E)
- Implant designed to match bone stiffness will have 90% higher σ_f

Longer lasting implants

a)

25

20

15

10

Decoupling strength and stiffness

- Matching bone modulus (trabecular: 100 – 2000 MPa) can make achieving high strength difficult
 - Bone strength ~50 MPa

Decoupling strength and stiffness

Time-dependent properties

- Fatigue in metallic metamaterial lattices
- Biodegradable metamaterial lattices

- Temporary implants (plates, screws etc.)
- Control degradation profile through metamaterial design

Degradable polymer foams

Traditionally 3D printing can only control porosity on a macroscale.

Foaming filaments allow microporosity within a single layer.

Tuning mechanical properties: strength, energy absorption

Degradable polymer foams

- Tuning mechanical properties with constant density
- Hierarchical foams: altering porosity length scale

• Metamaterial design parameter to control material degradation

10 mm 1,47 mm 1,47 mm 1,47 mm 1,47 mm

 Increased water absorption – key precursor to slow polymer degradation

Future work

- Powder bed fusion of biodegradable metamaterial lattices
 - Polymers and polymer-ceramic composites
 - Detailed metamaterial lattice structures

Thanks for listening! Questions?